سایت کاریابی جویا کار

مبانی نظری روش تحلیل پوشش داده ها DEA و مدل های آن

دسته بندي: مقالات / پاور پوینت
25 اردیبهشت

(فصل دوم تحقیق)


مشخصات این متغیر:

منابع: دارد

پژوهش های داخلی و خارجی: دارد

کاربرد این مطلب: منبعی برای فصل دوم پایان نامه، استفاده در بیان مسئله و پیشینه تحقیق و پروپوزال، استفاده در مقاله علمی پژوهشی، استفاده در تحقیق و پژوهش ها، استفاده آموزشی و مطالعه آزاد، آشنایی با اصول روش تحقیق دانشگاهی

نوع فایل:wordوقابل ویرایش

روش تحلیل پوشش داده ها

روش تحلیل پوشش داده ها (DEA) که رویکرد ناپارامتریک برآورد توابع مرزی است برای اولین بار توسط چارنز، کوبر و رودز (1987) معرفی شد. این محققین مفاهیم پیشنهادی فارل را رواج دادند و از آن پس در مقالات زیادی این روش به کار گرفته شد. در این روش بدون در نظر گرفتن شکل تبعی خاصی برای توابع، از برنامه ریزی خطی (LP)[1] و در نظر گرفتن نهاده ها و ستانده های بسیار متفاوت استفاده شده است و اقدام به یک سری بهینه یابی می شود و مقدار کارایی واحدهای مورد بررسی تحت دو فرض بازدهی ثابت و متغیر به مقیاس تعیین می شود. در روش DEA شکل های متفاوتی مانند شکل نسبی، شکل فزاینده و شکل پوششی (یا فراگیر) وجود دارد که در هرکدام از اینها در تعیین کارایی واحدهای مورد بررسی به روش خاصی عمل می شود. به این منظور از روش های مختلفی مانند یک مرحله ای، دو مرحله ای و چند مرحله ای استفاده می شود.

دو مدل بسیار اساسی در روش DEA وجود دارد که به مدل های CCR و BCC معروف هستند که به ترتیب معرفی می شوند. اگر فرض شود که بانکی دارای n شعبه بود و هرکدام از شعب با استفاده از m نهاده مقدار r ستانده را تولید کنند در این حالت میزان کارایی فنی یک شعبه منفرد با نام DMU به شرح زیر است:

 

در این مدل که با فرض بازدی ثابت به مقیاس CRS[2] و با نگرش به نهاده ها طراحی شده است،  λیک بردارN*1 شامل اعداد ثابت است که وزنهای مجموعه مرجع را برای شعب ناکارا نشان می دهد.

علوم انسانی
قيمت فايل:27000 تومان
تعداد اسلايدها:39
خريد فايل از سايت مرجع
دسته بندی ها
تبلیغات متنی