کامپیوتر و IT
دانلود پاورپوینت رشته کامپیوتر خواص یادگیری بر پایه نمونه و بیان مثالهای کاربردی مقدمه: در IBL بر خلاف دیگر الگوریتمهای یادگیری افزایشی، به جای استفاده از بخشهای از قبل کامپایل شده در طول فاز پیش بینی از یک سری نمونه های مشخص استفاده می شود. و از آنجائی که این الگوریتمها از توابع شباهت برای رده بندی میان نمونه ها استفاده می کنند، قادر به تشریح مفاهیم احتمالی نیز می باشند. در واقع، روشهای IBL دقیقا همه داده دریافتی شان را به خاطر می آورند. در واقع، معمولا هیچ گونه فاز آموزشی نداشته و تنها در زمان پیش گویی و تصمیم گیری دارای محاسبات می باشند. سپس، با گرفتن یک گزارش در پایگاه داده به دنبال نمونه های مشابه گشته و یک مدل محلی online برای محاسبه مقدار خروجی ایجاد می کند. الگوریتمهای IBL از دسته بندی کننده الگوی NN(Nearest Neighbor) گرفته شده اند، که در عین حال به ذخیره و استفاده از نمونه های منتخب برای پیش بینی دسته بندی می پردازد.الگوریتمهای تغییر یافته NN غیر افزایشی بوده و هدف اولیه شان، حفظ سازگاری کامل با مجموعه آموزشی اولیه می باشد، اگرچه داده را خلاصه می کنند ولی برای حداکثر کردن دقت دسته بندی در مورد نمونه های جدید نیز تلاشی انجام نمی دهند. در واقع به مساله نویز توجهی ندارند. در مقابل، الگوریتمهای IBL ، افزایش بوده و حداکثر ساختن دقت دسته بندی را نیز دز نظر می گیرند. سیستمهای CBR برای حل برخی از مشکلات این سیستمها ارائه شده اند. این سیستمها مشابه IBL ها هستند، با این تفاوت که حالات را تغییر داده و در طی حل مساله از بخشهایی از یک حالت نیز استفاده می کنند. در واقع IBL ، الگوریتم متمرکز شده CBR است که به انتخاب حالات مناسب برای دسته بندی، کاهش فضای ذخیره سازی، متعادل کردن نویز و یادگیری ارتباط ویژگیها کمک می کند. کلمات کلیدی: یادگیری بر پایه نمونه دسته بندی کننده الگوی NN الگوریتمهای یادگیری افزایشی خواص سیستم های یادگیری بر پایه نمونه فهرست مطالب یادگیری بر پایه نمونه Instance-based Learning مشکلات روشهای مختلف K-Nearest Neighbor (KNN) Discrete Target Functions Continuous Target Functions Distance Weighted Locally Weighted Regression Radial Basis Function Networks Case-Based Reasoning General Regression Neural Networks K-Nearest Neighbor Learning (k-NN) الگوریتم k-NN برای تابع هدف گسسته k-NN برای تابع هدف پیوسته Training data نرمالیزه کردن داده های آموزشی Normalised training data Distances of test instance from training data Distance-weighted k-NN نکاتی در مورد الگوریتم k-NN الگوریتم Distance-weighted k-NN بطور The curse of dimensionality Cross-validation Indexing ویژگیهای یادگیری نمونه مزایا: میتواند توابع پیچیده را مدل کند اطلاعات موجود در مثالهای آموزشی از بین نمیرود میتواند از نمایش سمبلیک نمونه ها استفاده کند معایب: بازده الگوریتم هنگام انجام دسته بندی کم است تعیین یک تابع فاصله مناسب مشکل است ویژگیهای نامرتبط تاثیر منفی در معیار فاصله دارند ممکن است به حافظه بسیار زیادی نیاز داشته باشد توابع Kernel Locally Weighted Regression Locally Weighted Linear Regression Radial Basis Functions روشی برای تقریب توابع است. یادگیری با RBF ارتباط نزدیکی با شبکه های عصبی مصنوعی و Distance-weighted regression دارد. Radial Basis Functions آموزش RBF نحوه انتخاب تعداد واحدهای مخفی نحوه انتخاب تعداد واحدهای مخفی ویژگی های شبکه RBF Case Based Reasoning سه خاصیت اصلی سیستم های یادگیری بر پایه نمونه: مسائلی را که به شیوه CBR حل میکنیم پزشکی: حقوق: بنگاه مسکن: اجزا سیستم CBR Case-base Retrieval of relevant cases Adaptation of solution مثالی از :CBR تعیین نرخ مسکن انطباق Adaptation یادگیری مثالی از CADET : CBR سیستم CADET از CBR برای طراحی مفهومی ابزارهای مکانیکی ساده مثل شیر آب استفاده میکند. یک مسئله طراحی جدید: مثالی از CADET : CBR مشکلات
منبع خبر | http://kandoocn.fileina.com/product-52557-دانلود-پاورپوينت-يادگيري-بر-پايه-نمونه.aspx |
قيمت فايل: | 24000 تومان |
تعداد اسلايدها: | 63 |
خريد فايل از سايت مرجع |
---|