خلاصه
مفید بودن شبكه عصبی آنالوگ مصنوعی بصورت خیلی نزدیكی با میزان قابلیت آموزش پذیری آن محدود می شود .
این مقاله یك معماری شبكه عصبی آنالوگ جدید را معرفی می كند كه وزنهای بكار برده شده در آن توسط الگوریتم ژنتیك تعیین می شوند .
اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیكونی با مساحت كمتر از 1mm كه شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .
از آنجائیكه آموزش می تواند در سرعت كامل شبكه انجام شود بنابراین چندین صد حالت منفرد در هر ثانیه می تواند توسط الگوریتم ژنتیك تست شود .
این باعث می شود تا پیاده سازی مسائل بسیار پیچیده كه نیاز به شبكه های چند لایه بزرگ دارند عملی بنظر برسد .
- مقدمه
شبكه های عصبی مصنوعی به صورت عمومی بعنوان یك راه حل خوب برای مسائلی از قبیل تطبیق الگو مورد پذیرش قرار گرفته اند .
علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .
یك دلیل برای این مسئله مشكلات موجود در تعیین وزنها برای سیناپسها در یك شبكه بر پایه مدارات آنالوگ است .
موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .
این الگوریتم بر پایه یك سیستم متقابل است كه مقادیر صحیح را از خطای خروجی شبكه محاسبه می كند .
یك شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .
در حالیكه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میكروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشكل روبرو می شویم .
دلیل این مشكل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد كه آنها با دما نیز تغییر كنند .
ساختن مدارات آنالوگی كه بتوانند همه این اثرات را جبران سازی كنند امكان پذیر است ولی این مدارات در مقایسه با مدارهایی كه جبران سازی نشده اند دارای حجم بزرگتر و سرعت كمتر هستند .
برای كسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبكه های عصبی آنالوگ نباید سعی كنند كه مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .
در عوض آنها باید تا حد امكان به فیزیك قطعات متكی باشند تا امكان استخراج یك موازی سازی گسترده در تكنولوژی VLSI مدرن بدست آید .
شبكه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .
مسئله اصلی كه هنوز باید حل شود آموزش است .
حجم بزرگی از مفاهیم شبكه عصبی آنالوگ كه در این زمینه می توانند یافت شوند ، تكنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بكار می برند ، مثل EEPROM حافظه های Flash .
در نظر اول بنظر می رسد كه این مسئله راه حل بهینه ای باشد .
آن فقط سطح كوچكی را مصرف می كند و بنابراین حجم سیناپس تا حد امكان فشرده می شود (كاهش تا حد فقط یك ترانزیستور) .
دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .
اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یك عامل منفی وجود خواهد داشت و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .
بنابراین چنین قطعاتی احتیاج به وزنهایی دارند كه از پیش تعیین شده باشند .
اما برای محاسبه وزنها یك دانش دقیق از تابع تبدیل شبكه ضروری است .
برای شكستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن كوتاهی داشته باشد .
این عامل باعث می شود كه الگوریتم ژنتیك وارد محاسبات شود .
با ارزیابی تعداد زیادی از ساختارهای تست می توان وزنها را با بكار بردن یك تراشه واقعی تعیین كرد .
همچنین این مسئله می تواند حجم عمده ای از تغییرات قطعه را جبران سلزی كند ، زیرا داده متناسب شامل خطاهایی است كه توسط این نقایص ایجاد شده اند .
- مقدمه
شبكه های عصبی مصنوعی به صورت عمومی بعنوان یك راه حل خوب برای مسائلی از قبیل تطبیق الگو مورد پذیرش قرار گرفته اند .
علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .
یك دلیل برای این مسئله مشكلات موجود در تعیین وزنها برای سیناپسها در یك شبكه بر پایه مدارات آنالوگ است .
موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .
این الگوریتم بر پایه یك سیستم متقابل است كه مقادیر صحیح را از خطای خروجی شبكه محاسبه می كند .
یك شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .
در حالیكه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میكروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشكل روبرو می شویم .
دلیل این مشكل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد كه آنها با دما نیز تغییر كنند .
ساختن مدارات آنالوگی كه بتوانند همه این اثرات را جبران سازی كنند امكان پذیر است ولی این مدارات در مقایسه با مدارهایی كه جبران سازی نشده اند دارای حجم بزرگتر و سرعت كمتر هستند .
برای كسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبكه های عصبی آنالوگ نباید سعی كنند كه مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .
در عوض آنها باید تا حد امكان به فیزیك قطعات متكی باشند تا امكان استخراج یك موازی سازی گسترده در تكنولوژی VLSI مدرن بدست آید .
شبكه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .
مسئله اصلی كه هنوز باید حل شود آموزش است .
حجم بزرگی از مفاهیم شبكه عصبی آنالوگ كه در این زمینه می توانند یافت شوند ، تكنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بكار می برند ، مثل EEPROM حافظه های Flash .
در نظر اول بنظر می رسد كه این مسئله راه حل بهینه ای باشد .
آن فقط سطح كوچكی را مصرف می كند و بنابراین حجم سیناپس تا حد امكان فشرده می شود (كاهش تا حد فقط یك ترانزیستور) .
دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .
اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یك عامل منفی وجود خواهد داشت و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .
بنابراین چنین قطعاتی احتیاج به وزنهایی دارند كه از پیش تعیین شده باشند .
اما برای محاسبه وزنها یك دانش دقیق از تابع تبدیل شبكه ضروری است .
برای شكستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن كوتاهی داشته باشد .
این عامل باعث می شود كه الگوریتم ژنتیك وارد محاسبات شود .
با ارزیابی تعداد زیادی از ساختارهای تست می توان وزنها را با بكار بردن یك تراشه واقعی تعیین كرد .
همچنین این مسئله می تواند حجم عمده ای از تغییرات قطعه را جبران سلزی كند ، زیرا داده متناسب شامل خطاهایی است كه توسط این نقایص ایجاد شده اند .
برق