شبکه های عصبی چند لایه پیش خور1 به طور وسیعی د ر زمینه های متنوعی از قبیل طبقه بندی الگوها، پردازش تصاویر، تقریب توابع و ... مورد استفاده قرار گرفته است.
الگوریتم یادگیری پس انتشار خطا2، یکی از رایج ترین الگوریتم ها جهت آموزش شبکه های عصبی چند لایه پیش خور می باشد. این الگوریتم، تقریبی از الگوریتم بیشترین تنزل3 می باشد و در چارچوب یادگیری عملکردی 4 قرار می گیرد.
عمومیت یافتن الگوریتمBP ، بخاطر سادگی و کاربردهای موفقیت آمیزش در حل مسائل فنی- مهندسی می باشد.
علیرغم، موفقیت های کلی الگوریتم BP در یادگیری شبکه های عصبی چند لایه پیش خور هنوز، چندین مشکل اصلی وجود دارد:
- الگوریتم پس انتشار خطا، ممکن است به نقاط مینیمم محلی در فضای پارامتر، همگرا شود. بنابراین زمانی که الگوریتم BP همگرا می شود، نمی توان مطمئن شد که به یک جواب بهینه رسیده باشیم.
- سرعت همگرایی الگوریتم BP، خیلی آهسته است.
از این گذشته، همگرایی الگوریتم BP، به انتخاب مقادیر اولیه وزنهای شبکه، بردارهای بایاس و پارامترها موجود در الگوریتم، مانند نرخ یادگیری، وابسته است